4 research outputs found

    Iranian cashes recognition using mobile

    Full text link
    In economical societies of today, using cash is an inseparable aspect of human life. People use cashes for marketing, services, entertainments, bank operations and so on. This huge amount of contact with cash and the necessity of knowing the monetary value of it caused one of the most challenging problems for visually impaired people. In this paper we propose a mobile phone based approach to identify monetary value of a picture taken from cashes using some image processing and machine vision techniques. While the developed approach is very fast, it can recognize the value of cash by average accuracy of about 95% and can overcome different challenges like rotation, scaling, collision, illumination changes, perspective, and some others.Comment: arXiv #13370

    Regularizers to the Rescue: Fighting Overfitting in Deep Learning-based Side-channel Analysis

    Get PDF
    Despite considerable achievements of deep learning-based side-channel analysis, overfitting represents a significant obstacle in finding optimized neural network models. This issue is not unique to the side-channel domain. Regularization techniques are popular solutions to overfitting and have long been used in various domains. At the same time, the works in the side-channel domain show sporadic utilization of regularization techniques. What is more, no systematic study investigates these techniques\u27 effectiveness. In this paper, we aim to investigate the regularization effectiveness on a randomly selected model, by applying four powerful and easy-to-use regularization techniques to eight combinations of datasets, leakage models, and deep learning topologies. The investigated techniques are L1L_1, L2L_2, dropout, and early stopping. Our results show that while all these techniques can improve performance in many cases, L1L_1 and L2L_2 are the most effective. Finally, if training time matters, early stopping is the best technique

    To Overfit, Or Not to Overfit: Improving the Performance of Deep Learning-based SCA

    Get PDF
    Profiling side-channel analysis allows evaluators to estimate the worst-case security of a target. When security evaluations relax the assumptions about the adversary\u27s knowledge, profiling models may easily be sub-optimal due to the inability to extract the most informative points of interest from the side-channel measurements. When used for profiling attacks, deep neural networks can learn strong models without feature selection with the drawback of expensive hyperparameter tuning. Unfortunately, due to very large search spaces, one usually finds very different model behaviors, and a widespread situation is to face overfitting with typically poor generalization capacity. Usually, overfitting or poor generalization would be mitigated by adding more measurements to the profiling phase to reduce estimation errors. This paper provides a detailed analysis of different deep learning model behaviors and shows that adding more profiling traces as a single solution does not necessarily help improve generalization. In fact, we recognize the main problem to be the sub-optimal selection of hyperparameters, which is then difficult to resolve by simply adding more measurements. Instead, we propose to use small hyperparameter tweaks or regularization as techniques to resolve the problem

    Breaking Free: Leakage Model-free Deep Learning-based Side-channel Analysis

    Get PDF
    Profiling side-channel analysis has gained widespread acceptance in both academic and industrial realms due to its robust capacity to unveil protected secrets, even in the presence of countermeasures. To harness this capability, an adversary must access a clone of the target device to acquire profiling measurements, labeling them with leakage models. The challenge of finding an effective leakage model, especially for a protected dataset with a low signal-to-noise ratio or weak correlation between actual leakages and labels, often necessitates an intuitive engineering approach, as otherwise, the attack will not perform well. In this paper, we introduce a deep learning approach that does not assume any specific leakage model, referred to as the multibit model. Instead of trying to learn a representation of the target intermediate data (label), we utilize the concept of the stochastic model to decompose the label into bits. Then, the deep learning model is used to classify each bit independently. This versatile multibit model can align with existing leakage models like the Hamming weight and Most Significant Bit leakage models while also possessing the flexibility to adapt to complex leakage scenarios. To further improve the attack efficiency, we extend the multibit model to simultaneously attack all 16 subkey bytes, which requires negligible computational effort. Based on our preliminary analysis, two of the four considered datasets could only be broken using a Hamming Weight leakage model. Using the same model, the proposed methods can efficiently crack all key bytes across four considered datasets. Our work, thus, signifies a significant step forward in deep learning-based side-channel attacks, showcasing a high degree of flexibility and efficiency without any presumption of the leakage model
    corecore